2 месяца назад 25 ноября 2022 в 21:41 18566

Российские физики из НИТУ МИСИС, Российского квантового центра и МГУ имени М.В. Ломоносова впервые в мире представили метод классификации фотографий с высокой точностью для 4-х классов изображений, основанный на архитектуре квантовой свёрточной нейронной сети. Для этого ученые улучшили структуру квантовой схемы и модель квантового персептрона – модель восприятия информации мозгом, которая необходима для процесса обучения нейронной сети. Статья об исследовании в области квантового машинного обучения опубликована в журнале Frontiers in Physics.

В последнее время нейронные сети активно применяется для решения широкого круга вычислительных задач. На данном этапе мощность классических компьютеров перестает расти – это значит, что для развития машинного обучения необходим новый подход к обучению нейросетей.

Квантовые процессоры, которые в перспективе смогут манипулировать огромными объёмами данных и превзойти классические компьютеры в определенных задачах, позволят реализовать квантовое машинное обучение. При переходе машинного обучения на квантовые компьютеры часть процессов может ускориться в несколько раз, а другая часть — в миллионы, соответственно квантовые нейронные сети будут оперативнее и эффективнее обычных.

Методы машинного обучения уже активно используются в исследованиях в области квантовых вычислений, например, при решении задачи классификации изображений, которая является центральной в создании компьютерного зрения.

Квантовые сверточные нейронные сети (QCNN) представляют собой ряд сверточных слоев или последовательностей квантовых операций, чередующихся со слоями объединения, которые вместе уменьшают размер хранимой информации, сохраняя при этом важные функции набора данных.

Российские физики лаборатории Квантовых информационных технологий Университета МИСИС совместно с коллегами из Российского квантового центра и МГУ имени М.В. Ломоносова впервые представили метод многоклассовой классификации изображений 4-х классов с высокой точностью, основанный на архитектуре QCNN. Исследователи усовершенствовали оптимизированную структуру квантовой схемы и квантовую модель персептрона — математическую или компьютерную модель восприятия информации мозгом в виде некоторой логической схемы с переходами, ассоциативными и реагирующими элементами, которая является элементарным блоком нейронной сети. Предложенный классификатор ученые тестировали на различных выборках из четырех изображений рукописных цифр или фотографий одежды и обуви.

Полученные результаты показывают, что высокая точность решения предложенного метода аналогична точности классических сверточных нейронных сетей с сопоставимым количеством обучаемых параметров.

В дальнейшем ученые планируют сделать дальнейшую оптимизацию персептрона более эффективной, чтобы задачи классификации решались существенно быстрее, чем классическими методами.

Никто не прокомментировал материал. Есть мысли?