11 месяцев назад 8 сентября 2023 в 22:34 9390

Ученые Университета науки и технологий МИСИС совместно со специалистами компании «СИТИЛАБС» усовершенствовали алгоритмы камер видеонаблюдения, определяющие смазанные и засвеченные номера автомобилей. Предварительная классификация качества изображения существенно экономит вычислительные ресурсы и повышает точность работы всей системы видеонаблюдения.

Модули кроссплатформенные, их можно установить на различные устройства. Эта разработка может быть с успехом использована, как на дорогах общего назначения, так и на некоторых горнопромышленных объектах.

Одной из важных задач, возникающих при анализе дорожно-транспортных ситуаций, в том числе и в условиях технологических дорог, является идентификация конкретного автомобиля по государственному регистрационному знаку. Зачастую из-за высокой скорости машины, яркого света фар, запылённости, а также недостаточных возможностей камеры машины распознаются некорректно. Своевременное отсеивание заведомо некорректных изображений номеров позволяет не задействовать впустую вычислительные ресурсы для распознавания, а также снижает вероятность ошибочного распознавания.

Для определения степени засвеченности автомобильного номера специалисты предлагают использовать анализ гистограммы яркостей. Для детектирования как транспортных средств, так и автомобильных номеров используется хорошо известная нейронная сеть yolo-v5.

Отдельной задачей в ходе работы над нейронной сетью для определения смазанности было создание датасета для обучения. Условия, при которых изображения получаются смазанными, являются специфичными, и чтобы отобрать из огромного количества данных те, которые были пригодны для класса смазанных номеров, уходит большое количество времени.

Разработанный алгоритм, помимо классификации на читаемые и нечитаемые изображения, дает также количественную оценку степени смазанности и засвеченности. Эти данные в свою очередь могут быть использованы для корректировки параметров камеры, таких, как значение выдержки и диафрагмы, что позволит повысить качество последующих кадров.

Никто не прокомментировал материал. Есть мысли?